
Commitment Issues:
Understanding git for better version control and
collaboration

Jacob Adams, UGRC
UGIC 2024

git: Not Just an Unpleasant
Person

Ever wish baking had an undo button?

Photo by Vaibhav Jadhav: https://www.pexels.com/photo/man-preparing-dough-for-
bread-3218467/

https://www.pexels.com/photo/man-preparing-dough-for-bread-3218467/
https://www.pexels.com/photo/man-preparing-dough-for-bread-3218467/

All the bene�ts
Undo just about everything
Always have a known-good copy
Try new things without fear

Enable complex collaborations
Share your code easily

 https://xkcd.com/1597/

https://xkcd.com/1597/

Laying the Foundation

Basic Units of git

Blobs and trees: Storing �les and directories

Commit: A snapshot in time

Branches: A named lineage of commits

Repository: A collection of all the branches and commits

git is distributed

Hashes and Immutability

Every commit has a SHA-1 hash

What goes into the hash?
The data itself
Author & committer info
Timestamp
The parent commit

Commits are almost never deleted, just "hidden"

Key takeaway: commits are never modi�ed
☝☝☝

You may make a new commit that contains the same blob but the
timestamp will be di�erent

The Four Storage Areas

Repository: All the blobs, trees, and commits as binary files in the .git folder
Staging Area/Index: Your proposed next commit
Working Directory/Tree: The current commit "de-blobbed" as a normal folder
and files
HEAD: The currently checked out branch

The same �le can exist in all three areas with di�erent content
Repository: All your previous work on the file
Index: Changes you've made and staged for a future commit
Working Tree: Current edits that aren't finalized

Basic git Operations
Comitting edits
Branching
Merging
Merge con�icts

Life of a �le

Committing a �le: The bedrock operation

Starting point: previous work was committed

Make some edits

Stage your edits

Commit your edits

Branching
Experiment to your hearts content
Branches are cheap- don't be nervous about using them

Checkout: Switch between branches
Replaces content in working tree, index, and Head with the last
commit in the checked-out branch

Merging: Bringing it all back together

Fast Forward: Simply move master forward

Fast Forward: Simply move master forward

Merge Commit: One commit, two ancestors

Merge Commit: One commit, two ancestors

Con�ict is inevitable
Merge con�ict markers

Edit, save, commit, continue

GitHub: A cloud git server
with collaboration tools

Git is distributed: Remotes

Syncing work with fetch, pull, and push
fetch: Download all the commits from the remote that are not in your local repo
pull: Do a fetch and then merge your branch into the latest new commit (usually
just a fast-forward)
push: Send your commits to the remote

Always do a fetch or pull before starting to work locally!

GitHub development model
1. Create repo on GitHub
2. Clone it to your local machine
3. Create a local branch and commit to that
4. Push your branch to GitHub
5. Create Pull Request
6. Rebase and merge into GitHub main branch, delete GitHub branch
7. Pull GitHub main into local main
8. Delete local branch

Pull requests

Issue tracking

Stick a fork in it

Advanced git: Rebase,
Reset, and Recover

Rebase: Rewriting history

Rebase and merge: "Clean" merges

Cherry pick: Just one, please

Reset: The ultimate ctrl-z

Soft: Move HEAD back, leave changes staged

Mixed (defualt): Move HEAD, unstage changes

Hard: Blow everything away

Which reset should I use?
I want to completely abandon my current line of work and pretend it never happened

hard
(or really just checkout a new branch at the last point you want to continue from)

I don't have any work in progress or anything I want to keep, I just want to point my branch at a
di�erent commit

hard
I did a commit but I want to go back and change something about my edits without adding an extra
commit in the repo tree

mixed
I did a commit but I want to go back and make and stage more edits in addition to my original edits or
change the commit message

soft
also git commit --amend for just the last commit

Recovery: Commits are loyal friends, always
there when you need them
git reflog

git-graph: include commits mentioned by reflog

Help! I committed a
password!
Check out git-filter-repo

https://github.com/newren/git-filter-repo

Resources

Stack Exchange

YouTube

Pluralsight

The git docs

The git book

https://git-scm.com/docs
https://git-scm.com/books

